Deutsche Version |
The standard pitch tuning is A4 (A above middle C) − in German-speaking countries it is called a’. The notes have different names. The German system is used also in many other countries, as there are e.g. Poland, Czech Republic, and Russia. A "normal" piano has the following dimensions: width 145 to 150 cm, height 115 to 125 cm, depth 52 to 60 cm. A typical "keyboard" has 61 keys today. The sound frequencies of the 88 keys on the piano are: |
Piano key number |
English notation |
German notation |
Frequency Hz |
88 | C8 - Last tone | c - Highest | 4186.01 |
87 | B7 | h | 3951.07 |
86 | A7/B7 | ais/b | 3729.31 |
85 | A7 | a | 3520.00 |
84 | G7/A7 | gis/as | 3322.44 |
83 | G7 | g | 3135.96 |
82 | F7/G7 | fis/ges | 2959.96 |
81 | F7 | f | 2793.83 |
80 | E7 | e | 2637.02 |
79 | D7/E7 | dis/es'''' | 2489.02 |
78 | D7 | d | 2349.32 |
77 | C7/D7 | cis/des | 2217.46 |
76 | C7 | c | 2093.00 |
75 | B6 | h | 1975.53 |
74 | A6/B6 | ais/b | 1864.66 |
73 | A6 | a | 1760.00 |
72 | G6/A6 | gis/as | 1661.22 |
71 | G6 | g | 1567.98 |
70 | F6/G6 | fis/ges | 1479.98 |
69 | F6 | f | 1396.91 |
68 | E6 | e | 1318.51 |
67 | D6/E6 | dis/es | 1244.51 |
66 | D6 | d | 1174.66 |
65 | C6/D6 | cis/des | 1108.73 |
64 | C6 (high C) | c | 1046.50 |
63 | B5 | h | 987.767 |
62 | A5/B5 | ais/b | 932.328 |
61 | A5 | a | 880.000 |
60 | G5/A5 | gis/as | 830.609 |
59 | G5 | g | 783.991 |
58 | F5/G5 | fis/ges | 739.989 |
57 | F5 | f | 698.456 |
56 | E5 | e | 659.255 |
55 | D5/E5 | dis/es | 622.254 |
54 | D5 | d | 587.330 |
53 | C5/D5 | cis’’/des’’ | 554.365 |
52 | C5 | c | 523.251 |
51 | B4 | h | 493.883 |
50 | A4/B4 | ais/b | 466.164 |
49 | A4 concert pitch | a Kammerton | 440.000 |
48 | G4/A4 | gis/as' | 415.305 |
47 | G4 | g | 391.995 |
46 | F4/G4 | fis/ges | 369.994 |
45 | F4 | f | 349.228 |
44 | E4 | e | 329.628 |
43 | D4/E4 | dis/es | 311.127 |
42 | D4 | d | 293.665 |
41 | C4/D4 | cis/des | 277.183 |
40 | C4 (middle C) | c (Schloss-C) | 261.626 |
39 | B3 | h | 246.942 |
38 | A3/B3 | ais/b | 233.082 |
37 | A3 | a | 220.000 |
36 | G3/A3 | gis/as | 207.652 |
35 | G3 | g | 195.998 |
34 | F3/G3 | fis/ges | 184.997 |
33 | F3 | f | 174.614 |
32 | E3 | e | 164.814 |
31 | D3/E3 | dis/es | 155.563 |
30 | D3 | d | 146.832 |
29 | C3/D3 | cis/des | 138.591 |
28 | C3 | c | 130.813 |
27 | B2 | H | 123.471 |
26 | A2/B2 | Ais/B | 116.541 |
25 | A2 | A | 110.000 |
24 | G2/A2 | Gis/As | 103.826 |
23 | G2 | G | 97.9989 |
22 | F2/G2 | Fis/Ges | 92.4986 |
21 | F2 | F | 87.3071 |
20 | E2 | E | 82.4069 |
19 | D2/E2 | Dis/Es | 77.7817 |
18 | D2 | D | 73.4162 |
17 | C2/D2 | Cis/Des | 69.2957 |
16 | C2 (low C) | C | 65.4064 |
15 | B1 | ,H | 61.7354 |
14 | A1/B1 | ,Ais/,B ~60 Hz | 58.2705 |
13 | A1 | ,A | 55.0000 |
12 | G1/A1 | ,Gis/,As | 51.9130 |
11 | G1 | ,G ~50 Hz | 48.9995 |
10 | F1/G1 | ,Fis/,Ges | 46.2493 |
9 | F1 | ,F | 43.6536 |
8 | E1 | ,E | 41.2035 |
7 | D1/E1 | ,Dis/,Es | 38.8909 |
6 | D1 | ,D | 36.7081 |
5 | C1/D1 | ,Cis/,Des | 34.6479 |
4 | C1 | ,C | 32.7032 |
3 | B0 | ,,H | 30.8677 |
2 | A0/B0 | ,,Ais/,,B | 29.1353 |
1 | A0 - First tone | ,,A - Lowest | 27.5000 |
In the twelve-semitone scale the frequency of the next semitone (halftone) is higher by the factor of twelfth root of two = 1.0594630943592952645618252949463 or lower by the factor 0.94387431268169349664191315666757. |
A sound engineer should know the following: The AC hum of 50 Hz in Europe is close to the pitch of G1 = 48.99 Hz (49 Hz). The AC hum of 60 Hz in the U.S. is a minor third higher close to the pitch of A1/B1 = 58.27 Hz (58 Hz). So you can find out logically, whether a sound recording was made in Europe or in the U.S. |
A pure tone with the frequency f = 440 Hz has the amplitude function: A = sin (880 π×t) - where t is given in seconds. |
The following equation will give the frequency f of the nth piano key number, as shown in the table: Alternatively, this can be written as: |
"Middle C" is in any case only approximately in the middle for the modern concert piano. For most other instruments it is not in the middle at all. It is is the lowest note on the standard flute, almost the highest note on the bassoon. Notationally it is the point of symmetry between the treble and bass staffs (the current position of the clefs being relatively modern inventions, and relative to modern human vocal ranges); that is the only other sense in which it is "in the middle". |
Notes and keyboard
The concert pitch A4 = a’ on the piano lies in the
octave between C4 = c’ (middle C) and C5= c’’.
The middle C note as octave C4 and the next octave C5.
"Middle C" is designated C4 in scientific pitch notation with a frequency of 261.6 Hz,
because of the note's position as the fourth C key on a standard 88 key piano keyboard.
Some manufacturers label the 440 Hz concert pitch not correctly as A3. It is really A4.
Cubase, Akai, and ProTools are starting differently at octave −2, or octave 1. That's not the standard.
The first tone is the note A0 and that is 27.5 Hz. The classical music world is counting this way.
The tuning pitch for the Western music (concert pitch), is 440 Hz. It is named A4 or a’.
Musical note A4: http://www.wolframalpha.com/input/?i=musical+note+A4&lk=1 |
Name and frequency of the octave positions | |||||||||
English | A0 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 |
German | ,,A | ,A | A | a | a | a | a | a | a |
Frequency in Hz | 27.5 | 55 | 110 | 220 | 440 | 880 | 1760 | 3520 | 7040 |
Numbers of the lowest c note for the respective musical octave.
Ranges of some popular instruments
Instrument | Start | End |
guitar | E2 | E6 |
seven string guitar | B1 | E6 |
cello | C2 | A6 |
4-string bass guitar | E1 | E5 |
piano | A0 | C8 |
piccolo | C5 | C8 |
violin | G3 | E7 |
All piano keys
Frequencies of the equal temperament − table or chart | |||||||||||
Octave | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
C / B# | 16.352 | 32.703 | 65.406 | 130.813 | 261.626 | 523.251 | 1046.502 | 2093.005 | 4186.009 | 8372.018 | 16744.036 |
C# / Db | 17.324 | 34.648 | 69.296 | 138.591 | 277.183 | 554.365 | 1108.731 | 2217.461 | 4434.922 | 8869.844 | 17739.688 |
D | 18.354 | 36.708 | 73.416 | 146.832 | 293.665 | 587.330 | 1174.659 | 2349.318 | 4698.636 | 9397.273 | 18794.545 |
D# / Eb | 19.445 | 38.891 | 77.782 | 155.563 | 311.127 | 622.254 | 1244.508 | 2489.016 | 4978.032 | 9956.063 | 19912.127 |
E / Fb | 20.602 | 41.203 | 82.407 | 164.814 | 329.628 | 659.255 | 1318.510 | 2637.020 | 5274.041 | 10548.082 | - |
F / E# | 21.827 | 43.654 | 87.307 | 174.614 | 349.228 | 698.456 | 1396.913 | 2793.826 | 5587.652 | 11175.303 | - |
F# / Gb | 23.125 | 46.249 | 92.499 | 184.997 | 369.994 | 739.989 | 1479.978 | 2959.955 | 5919.911 | 11839.822 | - |
G | 24.500 | 48.999 | 97.999 | 195.998 | 391.995 | 783.991 | 1567.982 | 3135.963 | 6271.927 | 12543.854 | - |
G# / Ab | 25.957 | 51.913 | 103.826 | 207.652 | 415.305 | 830.609 | 1661.219 | 3322.438 | 6644.875 | 13289.750 | - |
A | 27.500 | 55.000 | 110.000 | 220.000 | 440.000 | 880.000 | 1760.000 | 3520.000 | 7040.000 | 14080.000 | - |
A# / Bb | 29.135 | 58.270 | 116.541 | 233.082 | 466.164 | 932.328 | 1864.655 | 3729.310 | 7458.620 | 14917.240 | - |
B / Cb | 30.868 | 61.735 | 123.471 | 246.942 | 493.883 | 987.767 | 1975.533 | 3951.066 | 7902.133 | 15804.266 | - |
Comparing the Frequency Ratios for Equal Temperament and Pure Harmonic Series
Type | Length | Width | Height |
S | 155 cm | 147 cm | 101 cm |
M | 170 cm | 147 cm | 101 cm |
O | 180 cm | 147 cm | 101 cm |
A | 188 cm | 147 cm | 101 cm |
B | 211 cm | 148 cm | 101 cm |
C | 227 cm | 155 cm | 101 cm |
D | 274 cm | 157 cm | 101 cm |
Pitch | Start | End |
Bass | 82 Hz | 349 Hz |
Bariton | 89 Hz | 392 Hz |
Tenor | 131 Hz | 494 Hz |
Alt | 175 Hz | 699 Hz |
Soprano | 247 Hz | 1175 Hz |
Guitar Fret Board with Notes
MIDI note numbers (midi files)
Octave notation is given here in the international standard ISO system, formerly known as the ASA (Acoustical Society of America) or ANSI system. In this system, middle C (MIDI note number 60) is C4; octaves start with C, so the B just below (MIDI number 59) is B3. The lowest note of the normal modern piano is A0 (MIDI 21), though Boesendorfer Imperials go down to F0 or even C0. The highest note of the piano is C8 (MIDI 108). |
Octave # | MIDI Note Numbers | |||||||||||
C | C# | D | D# | E | F | F# | G | G# | A | A# | B | |
−1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
0 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
2 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
3 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
4 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
5 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 |
6 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 |
7 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 |
8 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |
9 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 |
Note: The MIDI specification only defines note number 60 as "Middle C", and all other notes are relative. The absolute octave number designations shown here are based on Middle C = C4, which is an arbitrary assignment. |
Method for finding the corresponding MIDI note number for a given frequency: Original expression f = 440 × 2(n − 69) / 12 Simplification step 1: f / 440 = 2(n − 69) / 12 Simplification step 2: log2 (f / 440) = (n − 69) / 12 Simplification step 3: 12 × log2 (f / 440) = n – 69 Formula for finding a MIDI note number given the frequency in Hz of the MIDI note: n = (12 × log2 (f / 440)) + 69 Given the frequency f for a note in Hz, it is possible to find the corresponding MIDI note number represented by the variable n. One version of the MIDI system uses C3 to designate Middle C (MIDI note 60 = 261.626 Hz). That means that the octave designation for MIDI note "0" would be "-2" or notated as C-2. Another version of the MIDI system uses the lowest note available to the MIDI system. MIDI note 1 = 8.176 Hz to designate Octave "0" with the notation of C0. "Middle C" is the MIDI note 60 = 261.626 Hz. That is octave 4 with the notation of C4. |
MIDI Notes and their corresponding frequencies
The frequency 261.626 Hz = C4 (middle C),
and not C5 or C3, how some firms try to explain us; look at:
http://www.music.vt.edu/musicdictionary/appendix/octaveregisters/octaveregisters.html
Note | MIDI | Hz | Note | MIDI | Hz | Note | MIDI | Hz | Note | MIDI | Hz | |||
C - | 0 | 8.176 | G# 1 | 32 | 51.913 | E 4 | 64 | 329.63 | C 7 | 96 | 2093.0 | |||
C# - | 1 | 8.662 | A 1 | 33 | 55.000 | F 4 | 65 | 349.23 | C# 7 | 97 | 2217.5 | |||
D - | 2 | 9.177 | A# 1 | 34 | 58.270 | F# 4 | 66 | 369.99 | D 7 | 98 | 2349.3 | |||
D# - | 3 | 9.723 | B 1 | 35 | 61.735 | G 4 | 67 | 391.99 | D# 7 | 99 | 2489.0 | |||
E - | 4 | 10.301 | C 2 | 36 | 65.406 | G# 4 | 68 | 415.31 | E 7 | 100 | 2637.0 | |||
F - | 5 | 10.913 | C# 2 | 37 | 69.295 | A 4 | 69 | 440.00 | F 7 | 101 | 2793.8 | |||
F# - | 6 | 11.562 | D 2 | 38 | 73.416 | A# 4 | 70 | 466.16 | F# 7 | 102 | 2960.0 | |||
G - | 7 | 12.250 | D# 2 | 39 | 77.781 | B 4 | 71 | 493.88 | G 7 | 103 | 3136.0 | |||
G# - | 8 | 12.978 | E 2 | 40 | 82.406 | C 5 | 72 | 523.25 | G# 7 | 104 | 3322.4 | |||
A - | 9 | 13.750 | F 2 | 41 | 87.307 | C# 5 | 73 | 554.37 | A 7 | 105 | 3520.0 | |||
A# - | 10 | 14.568 | F# 2 | 42 | 92.499 | D 5 | 74 | 587.33 | A# 7 | 106 | 3729.3 | |||
B - | 11 | 15.434 | G 2 | 43 | 97.998 | D# 5 | 75 | 622.25 | B 7 | 107 | 3951.1 | |||
C 0 | 12 | 16.352 | G# 2 | 44 | 103.82 | E 5 | 76 | 659.26 | C 8 | 108 | 4186.0 | |||
C# 0 | 13 | 17.324 | A 2 | 45 | 110.00 | F 5 | 77 | 698.46 | C# 8 | 109 | 4434.9 | |||
D 0 | 14 | 18.354 | A# 2 | 46 | 116.54 | F# 5 | 78 | 739.99 | D 8 | 110 | 4698.6 | |||
D# 0 | 15 | 19.445 | B 2 | 47 | 123.47 | G 5 | 79 | 783.99 | D# 8 | 111 | 4978.0 | |||
E 0 | 16 | 20.601 | C 3 | 48 | 130.81 | G# 5 | 80 | 830.61 | E 8 | 112 | 5274.0 | |||
F 0 | 17 | 21.826 | C# 3 | 49 | 138.59 | A 5 | 81 | 880.00 | F 8 | 113 | 5587.7 | |||
F# 0 | 18 | 23.124 | D 3 | 50 | 146.83 | A# 5 | 82 | 932.32 | F# 8 | 114 | 5919.9 | |||
G 0 | 19 | 24.499 | D# 3 | 51 | 155.56 | B 5 | 83 | 987.77 | G 8 | 115 | 6271.9 | |||
G# 0 | 20 | 25.956 | E 3 | 52 | 164.81 | C 6 | 84 | 1046.5 | G# 8 | 116 | 6644.9 | |||
A 0 | 21 | 27.50 | F 3 | 53 | 174.61 | C# 6 | 85 | 1108.7 | A 8 | 117 | 7040.0 | |||
A# 0 | 22 | 29.135 | F# 3 | 54 | 184.99 | D 6 | 86 | 1174.7 | A# 8 | 118 | 7458.6 | |||
B 0 | 23 | 30.867 | G 3 | 55 | 195.99 | D# 6 | 87 | 1244.5 | B 8 | 119 | 7902.1 | |||
C 1 | 24 | 32.703 | G# 3 | 56 | 207.65 | E 6 | 88 | 1318.5 | C 9 | 120 | 8372.0 | |||
C# 1 | 25 | 34.648 | A 3 | 57 | 220.00 | F 6 | 89 | 1396.9 | C# 9 | 121 | 8869.8 | |||
D 1 | 26 | 36.708 | A# 3 | 58 | 233.08 | F# 6 | 90 | 1480.0 | D 9 | 122 | 9397.3 | |||
D# 1 | 27 | 38.890 | B 3 | 59 | 246.94 | G 6 | 91 | 1568.0 | D# 9 | 123 | 9956.1 | |||
E 1 | 28 | 41.203 | C 4 | 60 | 261.63 | G# 6 | 92 | 1661.2 | E 9 | 124 | 10548.1 | |||
F 1 | 29 | 43.653 | C# 4 | 61 | 277.18 | A 6 | 93 | 1760.0 | F 9 | 125 | 11175.3 | |||
F# 1 | 30 | 46.249 | D 4 | 62 | 293.66 | A# 6 | 94 | 1864.7 | F# 9 | 126 | 11839.8 | |||
G 1 | 31 | 48.999 | D# 4 | 63 | 311.13 | B 6 | 95 | 1975.5 | G 9 | 127 | 12543.9 |
Frequency to Musical Note Converter
Find out what musical note a given frequency is. English system.
|